A sequence-independent in vitro transposon-based strategy for efficient cloning of genomes of large DNA viruses as bacterial artificial chromosomes
نویسندگان
چکیده
Bacterial artificial chromosomes (BACs) derived from genomes of large DNA viruses are powerful tools for functional delineation of viral genes. Current methods for cloning the genomes of large DNA viruses as BACs require prior knowledge of the viral sequences or the cloning of viral DNA fragments, and are tedious because of the laborious process of multiple plaque purifications, which is not feasible for some fastidious viruses. Here, we describe a novel method for cloning the genomes of large DNA viruses as BACs, which entails direct in vitro transposition of viral genomes with a BAC cassette, and subsequent recovery in Escherichia coli. Determination of insertion sites and adjacent viral sequences identify the BAC clones for genetic manipulation and functional characterization. Compared to existing methods, this new approach is highly efficient, and does not require any information on viral sequences or cloning of viral DNA fragments, and plaque purifications. This method could potentially be used for discovering previously unidentified viruses.
منابع مشابه
Transposons and their application in plant pathology
Prokaryote, viruses, and eukaryotes chromosomes contain fragments of DNA can move and migrate to other parts of the chromosome calling as Transposition and play an important role in new combinations of gene production. DNA fragments carrier the genes or transposons are the transposable elements that may called gene mutant also. Transposons can move to another position of the same chromosome or ...
متن کاملUse of Recombination-Mediated Genetic Engineering for Construction of Rescue Human Cytomegalovirus Bacterial Artificial Chromosome Clones
Bacterial artificial chromosome (BAC) technology has contributed immensely to manipulation of larger genomes in many organisms including large DNA viruses like human cytomegalovirus (HCMV). The HCMV BAC clone propagated and maintained inside E. coli allows for accurate recombinant virus generation. Using this system, we have generated a panel of HCMV deletion mutants and their rescue clones. In...
متن کاملEfficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage mu.
An efficient insertion mutagenesis strategy for bacterial genomes based on the phage Mu DNA transposition reaction was developed. Incubation of MuA transposase protein with artificial mini-Mu transposon DNA in the absence of divalent cations in vitro resulted in stable but inactive Mu DNA transposition complexes, or transpososomes. Following delivery into bacterial cells by electroporation, the...
متن کاملDirect sequencing of bacterial and P1 artificial chromosome-nested deletions for identifying position-specific single-nucleotide polymorphisms.
A loxP-transposon retrofitting strategy for generating large nested deletions from one end of the insert DNA in bacterial artificial chromosomes and P1 artificial chromosomes was described recently [Chatterjee, P. K. & Coren, J. S. (1997) Nucleic Acids Res. 25, 2205-2212]. In this report, we combine this procedure with direct sequencing of nested-deletion templates by using primers located in t...
متن کاملCloning, Assembly, and Modification of the Primary Human Cytomegalovirus Isolate Toledo by Yeast-Based Transformation-Associated Recombination
Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when in...
متن کامل